
 1

Breaking The Hash Table Speed Limit
Optimizing Hash Table Retrieval for Text Vocabularies

Adam Cooper Stephen Duncan Ryan Gregg

Department of Electrical Engineering and Computer Science, The University of Kansas
adam@intellidev.com, jrduncans@screamingspheres.com, ryan@intellidev.com

May 16, 2003

Introduction
Searching large collections of documents using ad hoc

queries is becoming increasingly more common, the
zenith examples being internet search engines such as
Yahoo! and Google. But such techniques are being
applied to more than collections of web pages;
information retrieval is making inroads into private
collections of business documents and even popular
desktop applications. Whether a searching application
runs on a corporate server or a personal handheld device,
some form of an index is always at its core. And given
that the index can be used to return acceptably relevant
results, the critical factor in index retrieval is speed.

In the majority of search applications, an instant speed
gain can be had by keeping the index in memory. And in
many such applications the initial delay required to load
the index into memory so that the disk never be touched
again is appropriate. Zobel, Heinz, and Williams follow
this in-memory approach, exploring the potential of
several viable candidate data structures for an in-memory
index [1]. Their results show the hash table as the clear
speed winner. They go on to offer some empirically-
backed suggestions for streamlining its implementation.
This paper builds on their work, demonstrating that minor
implementation changes can make a hash table even faster
by virtually eliminating one of the most costly operations
in retrieving an entry: the string comparison.

Basic Hashing Process
Hash table speed comes at a price: the assignment of

non-unique values to multiple indices in the table
(collisions). Typical hash functions are not unique, but
nearly unique; there will be cases where two different
strings generate the same hash code. Moreover, the output
of the hash function typically has a range much larger
than the allowed indices of the hash table, and a single
modulo operation is used to restrict the output of the hash
function to a range appropriate to the actual table size:

index = hash_function(key) modulo table_size

Both the non-unique quality of the hash function and the
memory limitations of the hash table itself contribute to
collisions, typically accounted for in one of two ways: by

associating more than one entry to a given index, usually
though a linked data structure, or by using a known
function to compute a new index if one already contains
an entry. Zobel, Heinz, and Williams do well to point out
the advantages of using a linked data structure within a
given index for in-memory vocabularies, their main point
being the use of a technique called move-to-front hashing
[1].

Using the principle of locality, they suggest that by
moving an entry searched for to the front of the list of
entries for a given index overall search speed will
improve. Over time, the entries more frequently searched
for move to the front of their list, and the less frequently
searched for entries get pushed to the end. Their empirical
results confirm the usefulness of the move-to-front
technique, particularly in tables where memory is
cramped and collisions are heavy. It is worth noting that
our testing does not use move-to-front hashing. In the end
what this means is that, if anything, we will be doing
more comparisons to find a requested entry and not less.
Since our optimization (to be outlined shortly) deals with
optimizing these individual entry comparisons, not
implementing move-to-front hashing will emphasize the
difference in the standard string comparison and our
technique. However, implementing move-to-front hashing
would not invalidate our optimization. It would, instead,
complement it. A fully optimized implementation would
do well to adhere to the move-to-front method outlined by
Zobel, Heinz, and Williams, and the technique outlined in
this paper.

Bottlenecks and Optimizations
There are three core parts to retrieving an entry from a

hash table given a key: computing the key’s hash code to
generate an index into the table, searching all entries
corresponding to the calculated index to find the correct
entry, and as part of the last step, the actual search method
used in an individual test, which is typically a string
comparison. Usually the complexity of computing the
hash value is some form of O(C), where C is the number
of characters in the input string. Finding the correct entry
for a group of entries corresponding to a given index is
also of linear complexity, O(E), where E is the number of
entries corresponding to a given index in the table. And
finally, the string comparison is O(K), where K is the
number of sequential characters beginning from the first

 2

which the two strings in question have in common. A
single hash table retrieval involves all three calculations.
Improving any one of them should have an impact on
retrieval time, proportionate to the time spent in each.

Requesting an entry from the table always requires
that we calculate the hash value for that word. As such,
optimizing the actual hash function is a must. Given a
string with c characters, the typical hash function
performs some routine mathematical operation on each
individual character. The time taken to compute the hash
value for a given string is, in general, c · o, where o is the
mathematical operation performed on an individual
character. Though most retrieval systems set some limit
on the length of a string, severe truncation in order to
reduce c is not a viable option for optimizing the hash
function. Reducing the magnitude of o, however, is
crucial. The shorter the per-character mathematical
operation takes, the faster we can generate both the hash
code and the index into the table. Unfortunately,
optimizing o almost inevitably decreases the uniqueness
of the resultant hash value. A hash function must be
chosen which is both fast and generates acceptable, nearly
unique output. If we could further flank this optimization
with changes that minimized the delay incurred from
searching through multiple, non-unique entries in a given
index, we can somewhat attain the best of both worlds:
push the hash function to the limit, and come close to
eliminating the consequences. In order to do so, we must
consider the other two major components of hash table
retrieval.

Given that the entry for a given string, if it exists in
the vocabulary, can be found at a specific index, we still
need to search all the entries of the index. Given an index
with e entries (whether we use a chaining system, where
multiple entries are literally linked to one index, or a
probing system, where entries are technically stored at
different indices, but are still associated with a starting
index), we must linearly search each entry until we find a
match. Thus, there are two immediate ways to optimize
the number of comparisons: decrease e, or try to store the
entry being searched for at the beginning of the list of
entries so it is the only comparison made. Decreasing e
can be done immediately by simply increasing the hash
table size. On large commercial systems where memory is
not a limitation, this is a viable option. On smaller user
systems though, memory is often tight and there are
significant bounds for the hash table size. In any case,
given that our hash table is as large as is feasible, we can
further optimize the time it takes to find the entry we are
looking for by implementing Zobel, Heinz, and Williams’
move-to-front technique discussed earlier. So, in the
worst case, we will search through all e entries associated
with an index and never find a match for the requested
word; in the best case, the first entry of e will be the entry
being searched for.

Even in an ideal hash table where every request yields
the comparison to a single entry, we still must contend
with the actual comparison method. Since a hash function
is only nearly unique, and particularly since its output is
bounded to produce an index into our hash table, even in
the scenario where only one entry is associated with an
index we have no way of knowing if it matches the
request. The standard solution to this dilemma is to
compare the entry word with the requested word and see
if they are the same. While this sounds trivial, string
comparison is not a cheap operation. Unlike the higher-
level linear search involved in finding an entry, where we
can stop as soon as a match is found, a string comparison
can only stop when a match is not found (or when there
are no more characters to compare). The closer a word in
the vocabulary is to the requested word, the longer it takes
for the string comparison to return false. Furthermore, in
large collections where there may be a plurality of highly
similar words to those searched on, the time spent on the
string comparison can rapidly become significant. Zobel,
Heinz, and Williams found the standard strcmp function
under both Solaris and Linux to be “highly inefficient;”
replacing it with their own custom routine “yielded
overall speed improvements of 20% or more.” Optimizing
the string comparison routine is a step in the right
direction, but what if we could do away with it entirely?
A total elimination of the string comparison is impossible,
but it can be effectively hushed into a corner.

Recall that a hash code is calculated for each word put
into the dictionary, and that this value is trimmed via a
modulo operation to generate an index into the hash table.
For simplicity, we will call the value before the modulo
operation the hash code, and call the generated index the
trimmed hash code. Typically the hash code is just treated
as an intermediate step to an index, and consequentially
thrown away. This is unfortunate, because for the
majority of words in a dictionary, their corresponding
hash code can uniquely identify them in the collection.
Furthermore, any retrieval must generate a hash code for
the token request before it can calculate the index into the
hash table. Unfortunately, since the hash codes created
during indexing are never saved, the hash code calculated
for the word being searched on is useless. But it does not
have to be.

The basic solution is simple: rather than store only the
word itself in the dictionary entry, we also store the hash
code. Then, when retrieving from the dictionary, rather
than comparing two strings, we retain the hash code of the
word being searched on and simply do a single integer
compare with the hash code of the entry. In practice there
are a few rare cases where this will not work out, so the
actual implementation is only slightly more involved.

 3

Eliminating the String Compare
We simply cannot totally eliminate the need for the

string comparison. Even with complicated hashing
functions that produce highly unique results, there are still
cases where two different input strings return the same
hash code. However, note that our proposal is not to
compare trimmed hash codes (hash table indices), but the
full result of the hash function. What this means is that if
there are two entries in the dictionary which share the
same hash code it is entirely a result of the non-
uniqueness of the hash function itself, not the size of the
hash table. This is good news, because it means that there
will only be a relative handful of entries which share the
same hash code. But the fact remains: the possibility of
associating two unique words in the dictionary with the
same hash code exists. And for that, we need the string
comparison.

But we also need one more piece of information: the
knowledge that the hash code of a given entry in the
dictionary is or is not unique to the vocabulary. Given
this, we can know at retrieval time if a single comparison
of two hash codes is sufficient or if the more costly string
comparison must be done. Simple changes to the
dictionary entry format and construction are all that is
needed.

Changes in Indexing
For the dictionary entry, we must add two new fields:

one for the hash code, and another which tells us if the
hash code is associated with only this word in the
dictionary (we will term this field isUnique). An
illustration of the old and new record implementations
follows.

String:
word

other
data…

Original Entry Format

String:
word

Integer:
hashCode

Boolean:
isUnique

other
data…

New Entry Format

If we use a 32-bit integer to store both the hashCode and
isUnique fields, we add 8 bytes to each entry in the
dictionary—an acceptable expansion in all but the most
memory-constrained environments.

The changes to indexing are equally trivial. Storing
the word is the same as before. Storing the hash code only
involves keeping a copy of the pre-modulo hash result so
we can add it to the entry along with the word itself. The
only thing remaining is the isUnique field. At first glance
it may seem we would need to do a costly second pass of
the dictionary to fill in the isUnique fields. Instead, we
can take advantage of the other side of the modulo coin:

for any given entry with a hash code h, the only other
entries which could potentially share h are those whose
trimmed hash code is also the same. That is, only entries
assigned to the same index can possibly share the same
hash code. We can easily determine isUnique during
indexing simply by doing a check on all other entries
currently assigned to the same index. If there does not
exist within the index another entry with the new entry’s
hash code, or if this is the first entry to be added to the
index, we set isUnique to true. If there exists within the
index another entry whose hash code is the same as the
entry we are adding, we set isUnique to false for both the
new and already stored entry1.

It is worth pointing out that this optimization favors,
like the move-to-front method of Zobel, Heinz, and
Williams, a linked approach to collision resolution. If the
hash table implementation uses a probing resolution
technique, it is possible to check many more entries in the
table than is necessary to determine if the new entry has a
unique hash code. In the worst case the hash table is full,
we have no way of knowing which entries belong to the
index we are trying to add to, and, via the order instructed
by the probing function, we must search the entire table!
The advantage of the linked approach is that we
absolutely define which trimmed hash code (index) a
given entry is associated with. And we have a definite
terminating point when scanning this list to determine if a
new entry’s hash code is indeed unique. The bottom line
is this: using a linked list to resolve collisions optimizes
the calculation of isUnique during indexing, and allows
for move-to-front hashing during retrieval: a win-win
situation.

Changes in Retrieval
Once the new indexing code is in place, and the new

dictionary is ready to be accessed in memory, the changes
to the retrieval process are simple.

Given a word W to look up, we begin by computing its
hash code, and corresponding trimmed hash code (the
index into the hash table). Beginning with the first entry E
in the index, we check the hash code of W against the
hash code of E. If equivalent, then we need know only
one more thing—is E’s hash code unique to the
dictionary? If so, then we have found W in the dictionary.
But if we fail the hash code test, then we know with
certainty that this entry does not correspond to W, and so
move on to the next available entry in the index. The rare
case is when we pass the hash code test but fail the
isUnique test. Then we must do a string compare of W

1 Note that there is no need to check for other entries whose isUnique
status needs to be cleared, since we never allow two entries to be termed
unique and share the same hash code in the first place. The changing of
the isUnique field of the already-stored entry is actually only significant
the first time it becomes non-unique; any subsequent non-unique
additions will simply make an already false isUnique value false once
more for whichever existing entry was found.

 4

against the word in E. If we pass the string comparison
test, then we have found W in the dictionary; if not, we
move on to the next available entry in the index.

In this system only a rare subset of requests typically
needs to execute the string comparison. For all the rest,
what used to be a costly string comparison to determine if
E corresponded to W is now only two integer comparisons
on success, and one integer comparison on failure.

Implementation
We used Java 1.4.1 to implement both an indexing

and retrieval system that take advantage of the hash code
optimization as discussed. Like Zobel, Heinz, and
Williams, we used different hash functions for both string
comparison and hash code comparison retrieval from the
dictionary. The following section offers a brief discussion
of the three hash functions used.

Hash Functions

Java String Hash Function
Java provides its own routine for getting a hash code

from a String object, which made a good candidate for
testing. The Java hash is essentially the same as the radix
hash function minus the modulo operation (see listing 2).

int h = hash;

if (h == 0) {

int off = offset;
char val[] = value;
int len = count;
for (int i = 0; i < len; i++) {

h = 31*h + val[off++];
}
hash = h;

}

return h;

Listing 1: Java’s String hash function, © Copyright Sun
Microsystems.

Radix and Bitwise Hash Functions
In addition, we ported Zobel, Heinz, and Williams’s

radix and bitwise hash functions to Java, and used them as
further test cases. The radix hash is nearly identical in
form to the Java String hash, except for the addition of a
modulo operation. Since we do not have direct access to
the character array inside the Java String object, some
overhead is incurred by a necessary call to
String.toCharArray().

// Author J. Zobel, April 2001.
 // Permission to use this code is freely
granted, provided that this statement is
retained.

int hval = 0;

int length = keyValue.length();
char value[] = keyValue.toCharArray();

for(int i = 0; i < length; i++)
{

hval = (SEED*hval + value[i]) % LARGEPRIME;
}
return(hval);

Listing 2: Java port of J. Zobel’s radix hash function.

// Author J. Zobel, April 2001.

 // Permission to use this code is freely
granted, provided that this statement is
retained.

int h = SEED;

int length = keyValue.length();
char value[] = keyValue.toCharArray();

for(int i = 0; i < length; i++)
{

h ^= ((h << 5) + value[i] + (h >> 2));
}

return h&0x7fffffff;

Listing 3: Java port of J. Zobel’s bitwise hash function.

Experiments

Test Data
Our test data was drawn from the TREC project, a

subset of data 565 MB in size (WT01-WT06;
approximately 21% of the entire WT01-WT28
collection). Our preprocessor collected 489,074 unique
terms from the collection, with a sum term frequency of
13,760,483.

Test Environment
All tests were run on a 1000 MHz Intel Pentium III

machine with 512 MB of RAM. Tests were executed
using Sun’s 1.4.1 Java Runtime Environment on
Windows XP Professional.

System.currentTimeMillis(), the standard Java timing
routine, returns values in intervals of 10 ms on Windows
XP—definitely a sub-optimal resolution for profiling our
performance. But all is not lost. Vlad Roubtsov has
written a publicly available JNI timing class that provides
native access to the Windows CPU timing API. Using his
timing methods, we were able to realize truly sub-
millisecond timing granularities.

 5

0.00

500.00

1,000.00

1,500.00

2,000.00

2,500.00

3,000.00

3,500.00

100 1000 10000 100000
Hash Table Size

H
as

h
Ta

bl
e

R
et

ri
ev

al
 T

im
e

(m
s)

String Comparison - Radix hash

String Comparison - Bitwise hash

String Comparison - Java's hash

Hash Code Comparison - Radix hash
Hash Code Comparison - Bitwise hash

Hash Code Comparison - Java's hash

Figure 1: Elapsed times for string comparison versus hash code comparison for three hash functions.

Results
In our experiments we evaluated the typical string

comparison implementation against our proposed hash
code comparison for all three hash functions. Our
measurements include hash table access time and the
number of integer and string comparisons made. All
timings are in milliseconds, and represent only the time
taken to make retrievals from the hash table.

Elapsed Time
Table 1 shows the elapsed times in milliseconds for

the standard string comparison implementation. The
various hash table sizes—100, 1,000, 10,000, and
100,000—are ordered by column; the three different hash
functions, by row. Table 2 uses the same format, and
shows the elapsed times resulting from our optimization.
Figure 1 is a visual representation of the data in Tables 1
and 2.

 100 1,000 10,000 100,000
Radix 3,248.92 426.668 62.846 25.691
Bitwise 3,187.96 389.713 60.971 25.63
Java 3,226.70 362.733 22.706 24.184

Table 1: Elapsed time (ms) using string comparison.

 100 1,000 10,000 100,000
Radix 803.795 112.013 21.325 15.915
Bitwise 800.011 109.828 21.145 15.781
Java 770.812 94.952 11.394 12.833

Table 2: Elapsed time (ms) using hash code comparison.

The difference is remarkable. However, it does

diminish as the hash table size increases. This is expected.
As we decrease the number of collisions, the comparisons
required to find a correct entry also decrease. But even for
the 100,000 size hash table, the hash code comparison did
better than the old string compare.

 6

String and Integer Comparisons
Further insight can be gained by observing the number

of integer comparisons and string comparisons made. A
string comparison involves a single execution of the string
comparison routine on a string. An integer comparison is
either the comparison of two hash codes, or the testing of
the isUnique field.

Tables 3, 4, and 5 show the number of string
comparisons required in the non-optimized
implementation for each of the three hash functions.

 100 1,000 10,000 100,000
String 2,502,360 258,760 26,912 3,264

Table 3: Radix hash, non-optimized, string comparisons
made during retrieval for various hash table sizes.

 100 1,000 10,000 100,000
String 2,431,920 251,992 26,408 3,600

Table 4: Bitwise hash, non-optimized, string comparisons
made during retrieval for various hash table sizes.

 100 1,000 10,000 100,000
String 2,413,408 238,960 3,928 1,272

Table 5: Java hash, non-optimized, string comparisons made
during retrieval for various hash table sizes.

Before comparing these numbers to the optimized
counts, notice how much this tells us about the hash
functions themselves. The number of string comparisons
varies not only by hash table size, but by hash function. In
every case, the Java hash function gets away with making
the fewest number of calls to the string comparison
routine. What this means is that the Java hash function is
looking at fewer entries in the hash table before it finds
the correct one. This is best illustrated by the 10,000 size
hash table: the bitwise and radix hash functions make
almost seven times as many comparisons before finding
the correct entry! It is important to remember that the
quality of a hash function is more than simply the per
character speed it is able to operate at, but the time it
saves later due to a good spread of the data. As the data
shows, the difference is significant.

When we add the integer comparison optimizations,
we see the same differences between the hash functions.
Tables 6, 7, and 8 show the number of integer and string
comparisons required in the optimized implementation for
each of the three hash functions.

The string comparisons have been virtually
eliminated. The bitwise hash made only 24 string
comparisons; quite an improvement over the previous
3,600 to 2,431,920. The Java hash made 12 (compared to
its previous 1,272 to 2,413,408), and the radix hash made

none. The claim that the string comparison can be
virtually eliminated is well defended.

 100 1000 10000 100000
String 0 0 0 0
Integer 2,646,736 263,184 27,872 4,224

Table 6: Radix hash, optimized, string and integer
comparisons made during retrieval for various hash table
sizes.

 100 1000 10000 100000
String 24 24 24 24
Integer 2,627,296 262,232 28,008 4,576

Table 7: Bitwise hash, optimized, string and integer
comparisons made during retrieval for various hash table
sizes.

 100 1000 10000 100000
String 16 16 16 16
Integer 2,617,808 241,536 4,888 2,232

Table 8: Java hash, optimized, string and integer
comparisons made during retrieval for various hash table
sizes.

Even more significant is that the proportionate

performances of the hash functions in the non-optimized
version propagate to the optimized version. But since the
comparisons being made now average between only one
or two integer comparisons, and very often only a single
integer, the execution time drops for all cases.

A good example of this is, again, the 10,000 sized
hash table. Consider figure 2, which graphs the elapsed
times as before but only for the 10,000 size hash table (cf.
Table 1 and 2):

Notice that, for the non-optimized implementation, it
would appear that the Java hash function result is a fluke
which would fit better in the optimized group. However,
notice that the optimized Java hash function does
proportionally better than its optimized contenders. This

0

10

20

30

40

50

60

70

H
as

h
Ta

bl
e

R
et

ri
ev

al
 T

im
e

(m
s)

String Comparison - Radix hash

String Comparison - Bitwise hash

String Comparison - Java's hash

Hash Code Comparison - Radix hash

Hash Code Comparison - Bitwise hash

Hash Code Comparison - Java's hash

 7

is directly related to the number of compares the Java
function has to go through to get to the correct entry (its
ability to spread data evenly in the hash table). For a hash
table of size 10,000, the Java hash function did the best
job of spreading and retrieving data. However, an
optimized version of even the “worst” hash function for
this table size—the radix hash—performed better than the
non-optimized Java hash function. And more, when
optimized, the Java function cut its time in half (cf. Tables
1 and 2). Using the hash code comparison nearly
eliminates string comparison and significantly improves
hash table retrieval time.

Conclusion
Significant hash table retrieval advantages can be had

by making a few small changes to eliminate the need for
the string comparison in all but the rarest cases.

Additions to the dictionary entry structure include the
addition of two fields: the full hash code corresponding to
this word in the dictionary, and a boolean indicating
whether or not the full hash code uniquely identifies the
term in the dictionary.

Additions to the indexing process include only the
storing of the full hash code and the calculation and
storage of the boolean unique identifier.

Changes to the retrieval process are simply a double
integer test—one for the hash code, one for the boolean—
before resorting to the string comparison routine. In the
vast majority of cases, a single integer test is all that is
needed to determine an entry is not what is being searched
for, a double integer test is all that is needed to find the
correct entry, and the string comparison will never
execute.

This optimization can be complimented by the move-
to-front technique outlined by Zobel, Heinz, and
Williams.

Results are most dramatic for very dense hash tables
with a high collision ratio. But whether the target platform
is rich or poor in hardware resources, the integer
comparison optimization outlined in this paper is useful.
For portable devices where memory is cramped, hash
tables are likely to be collision heavy, an area where this
optimization shines. For heavy-traffic servers where
memory is readily available, the fractional speed
advantages offered by this optimization can quickly
accrue to significance.

Future Work
A native implementation of the retrieval engine in C

or C++ would hopefully further establish the results seen
so far.

There is great room for more testing. More
collections, both larger and more diverse than the sub-
collection used, would provide better insight into the

applicability of the suggested optimization. In addition to
the optimization tested here, we would also like to
implement move-to-front hashing and compare hash table
performance with and without both of these
optimizations.

Acknowledgements
We thank Dr. Susan Gauch and Devanand Ravindran.

This research was supported by The University of Kansas.

References
[1] J. Zobel, S. Heinz, and H.E. Williams. In-memory

Hash Tables for Accumulating Text Vocabularies.
Information Processing Letter, 80(6): 271-277,
2001.

