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Introduction 
Searching large collections of documents using ad hoc 

queries is becoming increasingly more common, the 
zenith examples being internet search engines such as 
Yahoo! and Google. But such techniques are being 
applied to more than collections of web pages; 
information retrieval is making inroads into private 
collections of business documents and even popular 
desktop applications. Whether a searching application 
runs on a corporate server or a personal handheld device, 
some form of an index is always at its core. And given 
that the index can be used to return acceptably relevant 
results, the critical factor in index retrieval is speed. 

In the majority of search applications, an instant speed 
gain can be had by keeping the index in memory. And in 
many such applications the initial delay required to load 
the index into memory so that the disk never be touched 
again is appropriate. Zobel, Heinz, and Williams follow 
this in-memory approach, exploring the potential of 
several viable candidate data structures for an in-memory 
index [1]. Their results show the hash table as the clear 
speed winner. They go on to offer some empirically-
backed suggestions for streamlining its implementation. 
This paper builds on their work, demonstrating that minor 
implementation changes can make a hash table even faster 
by virtually eliminating one of the most costly operations 
in retrieving an entry: the string comparison. 

Basic Hashing Process 
Hash table speed comes at a price: the assignment of 

non-unique values to multiple indices in the table 
(collisions). Typical hash functions are not unique, but 
nearly unique; there will be cases where two different 
strings generate the same hash code. Moreover, the output 
of the hash function typically has a range much larger 
than the allowed indices of the hash table, and a single 
modulo operation is used to restrict the output of the hash 
function to a range appropriate to the actual table size: 

 
index = hash_function(key) modulo table_size 
 

Both the non-unique quality of the hash function and the 
memory limitations of the hash table itself contribute to 
collisions, typically accounted for in one of two ways: by 

associating more than one entry to a given index, usually 
though a linked data structure, or by using a known 
function to compute a new index if one already contains 
an entry. Zobel, Heinz, and Williams do well to point out 
the advantages of using a linked data structure within a 
given index for in-memory vocabularies, their main point 
being the use of a technique called move-to-front hashing 
[1]. 

Using the principle of locality, they suggest that by 
moving an entry searched for to the front of the list of 
entries for a given index overall search speed will 
improve. Over time, the entries more frequently searched 
for move to the front of their list, and the less frequently 
searched for entries get pushed to the end. Their empirical 
results confirm the usefulness of the move-to-front 
technique, particularly in tables where memory is 
cramped and collisions are heavy. It is worth noting that 
our testing does not use move-to-front hashing. In the end 
what this means is that, if anything, we will be doing 
more comparisons to find a requested entry and not less. 
Since our optimization (to be outlined shortly) deals with 
optimizing these individual entry comparisons, not 
implementing move-to-front hashing will emphasize the 
difference in the standard string comparison and our 
technique. However, implementing move-to-front hashing 
would not invalidate our optimization. It would, instead, 
complement it. A fully optimized implementation would 
do well to adhere to the move-to-front method outlined by 
Zobel, Heinz, and Williams, and the technique outlined in 
this paper. 

Bottlenecks and Optimizations 
There are three core parts to retrieving an entry from a 

hash table given a key: computing the key’s hash code to 
generate an index into the table, searching all entries 
corresponding to the calculated index to find the correct 
entry, and as part of the last step, the actual search method 
used in an individual test, which is typically a string 
comparison. Usually the complexity of computing the 
hash value is some form of O(C), where C is the number 
of characters in the input string. Finding the correct entry 
for a group of entries corresponding to a given index is 
also of linear complexity, O(E), where E is the number of 
entries corresponding to a given index in the table. And 
finally, the string comparison is O(K), where K is the 
number of sequential characters beginning from the first 
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which the two strings in question have in common. A 
single hash table retrieval involves all three calculations. 
Improving any one of them should have an impact on 
retrieval time, proportionate to the time spent in each. 

Requesting an entry from the table always requires 
that we calculate the hash value for that word. As such, 
optimizing the actual hash function is a must. Given a 
string with c characters, the typical hash function 
performs some routine mathematical operation on each 
individual character. The time taken to compute the hash 
value for a given string is, in general, c · o, where o is the 
mathematical operation performed on an individual 
character. Though most retrieval systems set some limit 
on the length of a string, severe truncation in order to 
reduce c is not a viable option for optimizing the hash 
function. Reducing the magnitude of o, however, is 
crucial. The shorter the per-character mathematical 
operation takes, the faster we can generate both the hash 
code and the index into the table. Unfortunately, 
optimizing o almost inevitably decreases the uniqueness 
of the resultant hash value. A hash function must be 
chosen which is both fast and generates acceptable, nearly 
unique output. If we could further flank this optimization 
with changes that minimized the delay incurred from 
searching through multiple, non-unique entries in a given 
index, we can somewhat attain the best of both worlds: 
push the hash function to the limit, and come close to 
eliminating the consequences. In order to do so, we must 
consider the other two major components of hash table 
retrieval. 

Given that the entry for a given string, if it exists in 
the vocabulary, can be found at a specific index, we still 
need to search all the entries of the index. Given an index 
with e entries (whether we use a chaining system, where 
multiple entries are literally linked to one index, or a 
probing system, where entries are technically stored at 
different indices, but are still associated with a starting 
index), we must linearly search each entry until we find a 
match. Thus, there are two immediate ways to optimize 
the number of comparisons: decrease e, or try to store the 
entry being searched for at the beginning of the list of 
entries so it is the only comparison made. Decreasing e 
can be done immediately by simply increasing the hash 
table size. On large commercial systems where memory is 
not a limitation, this is a viable option. On smaller user 
systems though, memory is often tight and there are 
significant bounds for the hash table size. In any case, 
given that our hash table is as large as is feasible, we can 
further optimize the time it takes to find the entry we are 
looking for by implementing Zobel, Heinz, and Williams’ 
move-to-front technique discussed earlier. So, in the 
worst case, we will search through all e entries associated 
with an index and never find a match for the requested 
word; in the best case, the first entry of e will be the entry 
being searched for. 

Even in an ideal hash table where every request yields 
the comparison to a single entry, we still must contend 
with the actual comparison method. Since a hash function 
is only nearly unique, and particularly since its output is 
bounded to produce an index into our hash table, even in 
the scenario where only one entry is associated with an 
index we have no way of knowing if it matches the 
request. The standard solution to this dilemma is to 
compare the entry word with the requested word and see 
if they are the same. While this sounds trivial, string 
comparison is not a cheap operation. Unlike the higher-
level linear search involved in finding an entry, where we 
can stop as soon as a match is found, a string comparison 
can only stop when a match is not found (or when there 
are no more characters to compare). The closer a word in 
the vocabulary is to the requested word, the longer it takes 
for the string comparison to return false. Furthermore, in 
large collections where there may be a plurality of highly 
similar words to those searched on, the time spent on the 
string comparison can rapidly become significant. Zobel, 
Heinz, and Williams found the standard strcmp function 
under both Solaris and Linux to be “highly inefficient;” 
replacing it with their own custom routine “yielded 
overall speed improvements of 20% or more.” Optimizing 
the string comparison routine is a step in the right 
direction, but what if we could do away with it entirely? 
A total elimination of the string comparison is impossible, 
but it can be effectively hushed into a corner. 

Recall that a hash code is calculated for each word put 
into the dictionary, and that this value is trimmed via a 
modulo operation to generate an index into the hash table. 
For simplicity, we will call the value before the modulo 
operation the hash code, and call the generated index the 
trimmed hash code. Typically the hash code is just treated 
as an intermediate step to an index, and consequentially 
thrown away. This is unfortunate, because for the 
majority of words in a dictionary, their corresponding 
hash code can uniquely identify them in the collection. 
Furthermore, any retrieval must generate a hash code for 
the token request before it can calculate the index into the 
hash table. Unfortunately, since the hash codes created 
during indexing are never saved, the hash code calculated 
for the word being searched on is useless. But it does not 
have to be. 

The basic solution is simple: rather than store only the 
word itself in the dictionary entry, we also store the hash 
code. Then, when retrieving from the dictionary, rather 
than comparing two strings, we retain the hash code of the 
word being searched on and simply do a single integer 
compare with the hash code of the entry. In practice there 
are a few rare cases where this will not work out, so the 
actual implementation is only slightly more involved. 
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Eliminating the String Compare 
We simply cannot totally eliminate the need for the 

string comparison. Even with complicated hashing 
functions that produce highly unique results, there are still 
cases where two different input strings return the same 
hash code. However, note that our proposal is not to 
compare trimmed hash codes (hash table indices), but the 
full result of the hash function. What this means is that if 
there are two entries in the dictionary which share the 
same hash code it is entirely a result of the non-
uniqueness of the hash function itself, not the size of the 
hash table. This is good news, because it means that there 
will only be a relative handful of entries which share the 
same hash code. But the fact remains: the possibility of 
associating two unique words in the dictionary with the 
same hash code exists. And for that, we need the string 
comparison.  

But we also need one more piece of information: the 
knowledge that the hash code of a given entry in the 
dictionary is or is not unique to the vocabulary. Given 
this, we can know at retrieval time if a single comparison 
of two hash codes is sufficient or if the more costly string 
comparison must be done. Simple changes to the 
dictionary entry format and construction are all that is 
needed. 

Changes in Indexing 
For the dictionary entry, we must add two new fields: 

one for the hash code, and another which tells us if the 
hash code is associated with only this word in the 
dictionary (we will term this field isUnique). An 
illustration of the old and new record implementations 
follows. 

 
String:  
word  

other 
data… 

Original Entry Format 
 

String: 
word  

Integer: 
hashCode 

Boolean: 
isUnique 

other 
data… 

New Entry Format 
 
If we use a 32-bit integer to store both the hashCode and 
isUnique fields, we add 8 bytes to each entry in the 
dictionary—an acceptable expansion in all but the most 
memory-constrained environments. 

The changes to indexing are equally trivial. Storing 
the word is the same as before. Storing the hash code only 
involves keeping a copy of the pre-modulo hash result so 
we can add it to the entry along with the word itself. The 
only thing remaining is the isUnique field. At first glance 
it may seem we would need to do a costly second pass of 
the dictionary to fill in the isUnique fields. Instead, we 
can take advantage of the other side of the modulo coin: 

for any given entry with a hash code h, the only other 
entries which could potentially share h are those whose 
trimmed hash code is also the same. That is, only entries 
assigned to the same index can possibly share the same 
hash code. We can easily determine isUnique during 
indexing simply by doing a check on all other entries 
currently assigned to the same index. If there does not 
exist within the index another entry with the new entry’s 
hash code, or if this is the first entry to be added to the 
index, we set isUnique to true. If there exists within the 
index another entry whose hash code is the same as the 
entry we are adding, we set isUnique to false for both the 
new and already stored entry1. 

It is worth pointing out that this optimization favors, 
like the move-to-front method of Zobel, Heinz, and 
Williams, a linked approach to collision resolution. If the 
hash table implementation uses a probing resolution 
technique, it is possible to check many more entries in the 
table than is necessary to determine if the new entry has a 
unique hash code. In the worst case the hash table is full, 
we have no way of knowing which entries belong to the 
index we are trying to add to, and, via the order instructed 
by the probing function, we must search the entire table! 
The advantage of the linked approach is that we 
absolutely define which trimmed hash code (index) a 
given entry is associated with. And we have a definite 
terminating point when scanning this list to determine if a 
new entry’s hash code is indeed unique. The bottom line 
is this: using a linked list to resolve collisions optimizes 
the calculation of isUnique during indexing, and allows 
for move-to-front hashing during retrieval: a win-win 
situation. 

Changes in Retrieval 
Once the new indexing code is in place, and the new 

dictionary is ready to be accessed in memory, the changes 
to the retrieval process are simple. 

Given a word W to look up, we begin by computing its 
hash code, and corresponding trimmed hash code (the 
index into the hash table). Beginning with the first entry E 
in the index, we check the hash code of W against the 
hash code of E. If equivalent, then we need know only 
one more thing—is E’s hash code unique to the 
dictionary? If so, then we have found W in the dictionary. 
But if we fail the hash code test, then we know with 
certainty that this entry does not correspond to W, and so 
move on to the next available entry in the index. The rare 
case is when we pass the hash code test but fail the 
isUnique test. Then we must do a string compare of W 
                                                           
1 Note that there is no need to check for other entries whose isUnique 
status needs to be cleared, since we never allow two entries to be termed 
unique and share the same hash code in the first place. The changing of 
the isUnique field of the already-stored entry is actually only significant 
the first time it becomes non-unique; any subsequent non-unique 
additions will simply make an already false isUnique value false once 
more for whichever existing entry was found. 
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against the word in E. If we pass the string comparison 
test, then we have found W in the dictionary; if not, we 
move on to the next available entry in the index. 

In this system only a rare subset of requests typically 
needs to execute the string comparison. For all the rest, 
what used to be a costly string comparison to determine if 
E corresponded to W is now only two integer comparisons 
on success, and one integer comparison on failure. 

Implementation 
We used Java 1.4.1 to implement both an indexing 

and retrieval system that take advantage of the hash code 
optimization as discussed. Like Zobel, Heinz, and 
Williams, we used different hash functions for both string 
comparison and hash code comparison retrieval from the 
dictionary. The following section offers a brief discussion 
of the three hash functions used. 

Hash Functions 

Java String Hash Function 
Java provides its own routine for getting a hash code 

from a String object, which made a good candidate for 
testing. The Java hash is essentially the same as the radix 
hash function minus the modulo operation (see listing 2). 

 
int h = hash; 
 
if (h == 0) { 

int off = offset; 
char val[] = value; 
int len = count; 
for (int i = 0; i < len; i++) { 

h = 31*h + val[off++]; 
} 
hash = h; 

} 
 
return h; 
 
Listing 1: Java’s String hash function, © Copyright Sun 
Microsystems. 

Radix and Bitwise Hash Functions 
In addition, we ported Zobel, Heinz, and Williams’s 

radix and bitwise hash functions to Java, and used them as 
further test cases. The radix hash is nearly identical in 
form to the Java String hash, except for the addition of a 
modulo operation. Since we do not have direct access to 
the character array inside the Java String object, some 
overhead is incurred by a necessary call to 
String.toCharArray(). 

 

// Author J. Zobel, April 2001. 
   // Permission to use this code is freely 
granted, provided that this statement is 
retained. 

 
int hval = 0; 

                         
int length = keyValue.length(); 
char value[] = keyValue.toCharArray(); 

 
for(int i = 0; i < length; i++) 
{ 

hval = (SEED*hval + value[i]) % LARGEPRIME; 
} 
return(hval); 
 
Listing 2: Java port of J. Zobel’s radix hash function. 
 

    
// Author J. Zobel, April 2001. 

   // Permission to use this code is freely 
granted, provided that this statement is 
retained. 

 
int h = SEED; 

                         
int length = keyValue.length(); 
char value[] = keyValue.toCharArray(); 

 
for(int i = 0; i < length; i++) 
{ 

h ^= ((h << 5) + value[i] + (h >> 2)); 
} 
 
return h&0x7fffffff; 
 
Listing 3: Java port of J. Zobel’s bitwise hash function. 
 

Experiments 

Test Data 
Our test data was drawn from the TREC project, a 

subset of data 565 MB in size (WT01-WT06; 
approximately 21% of the entire WT01-WT28 
collection). Our preprocessor collected 489,074 unique 
terms from the collection, with a sum term frequency of 
13,760,483. 

Test Environment 
All tests were run on a 1000 MHz Intel Pentium III 

machine with 512 MB of RAM. Tests were executed 
using Sun’s 1.4.1 Java Runtime Environment on 
Windows XP Professional. 

System.currentTimeMillis(), the standard Java timing 
routine, returns values in intervals of 10 ms on Windows 
XP—definitely a sub-optimal resolution for profiling our 
performance. But all is not lost. Vlad Roubtsov has 
written a publicly available JNI timing class that provides 
native access to the Windows CPU timing API. Using his 
timing methods, we were able to realize truly sub-
millisecond timing granularities. 
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Figure 1: Elapsed times for string comparison versus hash code comparison for three hash functions. 

 

Results 
In our experiments we evaluated the typical string 

comparison implementation against our proposed hash 
code comparison for all three hash functions. Our 
measurements include hash table access time and the 
number of integer and string comparisons made. All 
timings are in milliseconds, and represent only the time 
taken to make retrievals from the hash table. 

Elapsed Time 
Table 1 shows the elapsed times in milliseconds for 

the standard string comparison implementation. The 
various hash table sizes—100, 1,000, 10,000, and 
100,000—are ordered by column; the three different hash 
functions, by row. Table 2 uses the same format, and 
shows the elapsed times resulting from our optimization. 
Figure 1 is a visual representation of the data in Tables 1 
and 2.  

 
 100 1,000 10,000 100,000 
Radix 3,248.92 426.668 62.846 25.691 
Bitwise 3,187.96 389.713 60.971 25.63 
Java 3,226.70 362.733 22.706 24.184 

 
Table 1: Elapsed time (ms) using string comparison. 
 
 

 100 1,000 10,000 100,000 
Radix 803.795 112.013 21.325 15.915 
Bitwise 800.011 109.828 21.145 15.781 
Java 770.812 94.952 11.394 12.833 

 
Table 2: Elapsed time (ms) using hash code comparison. 

 
The difference is remarkable. However, it does 

diminish as the hash table size increases. This is expected. 
As we decrease the number of collisions, the comparisons 
required to find a correct entry also decrease. But even for 
the 100,000 size hash table, the hash code comparison did 
better than the old string compare. 
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String and Integer Comparisons 
Further insight can be gained by observing the number 

of integer comparisons and string comparisons made. A 
string comparison involves a single execution of the string 
comparison routine on a string. An integer comparison is 
either the comparison of two hash codes, or the testing of 
the isUnique field. 

Tables 3, 4, and 5 show the number of string 
comparisons required in the non-optimized 
implementation for each of the three hash functions. 

 
 100 1,000 10,000 100,000 
String 2,502,360 258,760 26,912 3,264 

 
Table 3: Radix hash, non-optimized, string comparisons 
made during retrieval for various hash table sizes. 
 
  

 100 1,000 10,000 100,000 
String 2,431,920 251,992 26,408 3,600 

 
Table 4: Bitwise hash, non-optimized, string comparisons 
made during retrieval for various hash table sizes. 
 

 100 1,000 10,000 100,000 
String 2,413,408 238,960 3,928 1,272 

 
Table 5: Java hash, non-optimized, string comparisons made 
during retrieval for various hash table sizes. 
 

Before comparing these numbers to the optimized 
counts, notice how much this tells us about the hash 
functions themselves. The number of string comparisons 
varies not only by hash table size, but by hash function. In 
every case, the Java hash function gets away with making 
the fewest number of calls to the string comparison 
routine. What this means is that the Java hash function is 
looking at fewer entries in the hash table before it finds 
the correct one. This is best illustrated by the 10,000 size 
hash table: the bitwise and radix hash functions make 
almost seven times as many comparisons before finding 
the correct entry! It is important to remember that the 
quality of a hash function is more than simply the per 
character speed it is able to operate at, but the time it 
saves later due to a good spread of the data. As the data 
shows, the difference is significant. 

When we add the integer comparison optimizations, 
we see the same differences between the hash functions. 
Tables 6, 7, and 8 show the number of integer and string 
comparisons required in the optimized implementation for 
each of the three hash functions. 

The string comparisons have been virtually 
eliminated. The bitwise hash made only 24 string 
comparisons; quite an improvement over the previous 
3,600 to 2,431,920. The Java hash made 12 (compared to 
its previous 1,272 to 2,413,408), and the radix hash made 

none. The claim that the string comparison can be 
virtually eliminated is well defended. 

 
 100 1000 10000 100000 
String 0 0 0 0 
Integer 2,646,736 263,184 27,872 4,224 

 
Table 6: Radix hash, optimized, string and integer 
comparisons made during retrieval for various hash table 
sizes. 
 

 100 1000 10000 100000 
String 24 24 24 24 
Integer 2,627,296 262,232 28,008 4,576 

 
Table 7: Bitwise hash, optimized, string and integer 
comparisons made during retrieval for various hash table 
sizes. 
 

 100 1000 10000 100000 
String 16 16 16 16 
Integer 2,617,808 241,536 4,888 2,232 

 
Table 8: Java hash, optimized, string and integer 
comparisons made during retrieval for various hash table 
sizes. 

 
Even more significant is that the proportionate 

performances of the hash functions in the non-optimized 
version propagate to the optimized version. But since the 
comparisons being made now average between only one 
or two integer comparisons, and very often only a single 
integer, the execution time drops for all cases. 

A good example of this is, again, the 10,000 sized 
hash table. Consider figure 2, which graphs the elapsed 
times as before but only for the 10,000 size hash table (cf. 
Table 1 and 2): 

Notice that, for the non-optimized implementation, it 
would appear that the Java hash function result is a fluke 
which would fit better in the optimized group. However, 
notice that the optimized Java hash function does 
proportionally better than its optimized contenders. This 
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is directly related to the number of compares the Java 
function has to go through to get to the correct entry (its 
ability to spread data evenly in the hash table). For a hash 
table of size 10,000, the Java hash function did the best 
job of spreading and retrieving data. However, an 
optimized version of even the “worst” hash function for 
this table size—the radix hash—performed better than the 
non-optimized Java hash function. And more, when 
optimized, the Java function cut its time in half (cf. Tables 
1 and 2). Using the hash code comparison nearly 
eliminates string comparison and significantly improves 
hash table retrieval time. 

Conclusion 
Significant hash table retrieval advantages can be had 

by making a few small changes to eliminate the need for 
the string comparison in all but the rarest cases. 

Additions to the dictionary entry structure include the 
addition of two fields: the full hash code corresponding to 
this word in the dictionary, and a boolean indicating 
whether or not the full hash code uniquely identifies the 
term in the dictionary. 

Additions to the indexing process include only the 
storing of the full hash code and the calculation and 
storage of the boolean unique identifier. 

Changes to the retrieval process are simply a double 
integer test—one for the hash code, one for the boolean—
before resorting to the string comparison routine. In the 
vast majority of cases, a single integer test is all that is 
needed to determine an entry is not what is being searched 
for, a double integer test is all that is needed to find the 
correct entry, and the string comparison will never 
execute. 

This optimization can be complimented by the move-
to-front technique outlined by Zobel, Heinz, and 
Williams. 

Results are most dramatic for very dense hash tables 
with a high collision ratio. But whether the target platform 
is rich or poor in hardware resources, the integer 
comparison optimization outlined in this paper is useful. 
For portable devices where memory is cramped, hash 
tables are likely to be collision heavy, an area where this 
optimization shines. For heavy-traffic servers where 
memory is readily available, the fractional speed 
advantages offered by this optimization can quickly 
accrue to significance. 

Future Work 
A native implementation of the retrieval engine in C 

or C++ would hopefully further establish the results seen 
so far. 

There is great room for more testing. More 
collections, both larger and more diverse than the sub-
collection used, would provide better insight into the 

applicability of the suggested optimization. In addition to 
the optimization tested here, we would also like to 
implement move-to-front hashing and compare hash table 
performance with and without both of these 
optimizations. 
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